1. **Circuits—Theory**:
 Circuit components; network graphs; KCL, KVL; Circuit analysis methods: nodal analysis, mesh analysis; basic network theorems and applications; transient analysis: RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits; coupled circuits; balanced 3-phase circuits. Two-port networks.

2. **Signals and Systems**:
 Representation of continuoustime and discretetime signals and systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analog signals through discrete-time systems.

3. **E.M. Theory**:

4. **Analog Electronics**:

5. **Digital Electronics**:
 Boolean algebra; minimisation of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).

6. **Energy Conversion**:
 Principles of electromechanical energy conversion: Torque and emf in rotating machines. DC machines: characteristics and performance analysis; starting and speed control of motors. Transformers: principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines: characteristics and performance analysis; speed control.

7. **Power Electronics and Electric Drives**:
 Semi-conductor power devices: diode, transistor, thyristor, triac, GTO and MOSFET-static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters: fully-controlled and half-controlled; principles of thyristor choppers and inverters; DC-DC converters; Switch mode inverter; basic concepts of speed control of dc and ac motor drives applications of variable-speed drives.

8. **Analog Communication**:
 Random variables: continuous, discrete; probability, probability functions. Statistical averages; probability models; Random signals and noise: white noise, noise equivalent bandwidth; signal transmission with noise; signal to noise ratio. Linear CW modulation: Amplitude modulation: DSB, DSB-SC and SSB. Modulators and Demodulators; Phase and Frequency modulation: PM & FM signals; narrow band FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system: Superheterodyne receivers, AM receivers, communication receivers, FM receivers, phase locked loop, SSB receiver Signal to noise ratio calculation or AM and FM receivers.

PAPER II
1. **Control Systems**:
Elements of control systems; block-diagram representations; open-loop & closed-loop systems; principles and applications of feedback. Control system components. LTI systems: time-domain and transform-domain analysis. Stability: Routh Hurwitz criterion, root-loci, Bode-plots and polar plots, Nyquist's criterion; Design of lead-lag compensators. Proportional, PI, PID controllers. State-variable representation and analysis of control systems.

2. **Microprocessors and Microcomputers**:
PC organisation; CPU, instruction set, register set timing diagram, programming, interrupts, memory interfacing, I/O interfacing, programmable peripheral devices.

3. **Measurement and Instrumentation**:
Error analysis; measurement of current voltage, power, energy, power-factor, resistance, inductance, capacitance and frequency; bridge measurements. Signal conditioning circuit; Electronic measuring instruments: multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum analyser, distortion meter. Transducers: thermocouple, thermistor, LVDT, strain-gage, piezo-electric crystal.

4. **Power Systems: Analysis and Control**:
Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults. Concepts of system stability: swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission.

5. **Power System Protection**:

6. **Digital Communication**: